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A numerical method is developed based on potential flow nonlinear lifting sur-
face theory for predicting the surface velocities and pressures on a rotor blade of
an erbitrary helicopter rotor system which is executing a constant rotational and
constant axial translational motion including, specifically, the hover flight mode.

condition is satisfied on the surface of the rotor blade. The problem is governed
by a Fredholm integral equation of the first kind which relates a singular velocity
doublet potential surface distribution applied on the rotor blades and wakes to the
normal relative velocity on the rotor blade surface. The wake model is assumed to
be of a prescribed shape.

the actual rotor blade upper and lower surfaces and wake surfaces by & finite number
of elemental surfaces on which the doublet strength is assumed constant and then
satisfying the resulting set of numericel normal surface boundary conditions at

the centroid of each of the blade elemental surfaces.

a given geometry of the wake. This program lends itself to an iterative procedure
for a future force free wake lifting surface theory analysis. The computer results
for two cace studies is also presented. The program listing is available from
West Virginia University.

The formulation of the problem is exact in the sense that the normal surface boundary

The solution of the integral is obtained in a numerical fashion by approximating

A computer program was developed for the lifting surface theory which depends on
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ABSTRACT

A numerical method is developed based on potential flow non-

linear 1ifting surface theory for predicting the surface velocities

4
1
q

and pressures on a rotor blade of an artitrary helicopter rotor system

which is executing a constant rotational and constant axial translational

motlon including, specifically, the hover flight mode. The formula- i
tion of the problem is exact in the sense that the normel surface

boundary condition is satisfied on the surface of the rotor blade.

|
1

The problem is governed by a Fredholm integral equation of the first
kind which relates a singular velocity doublet potential surface

distribution applied on the rotor blades and wakes to the normal relative

velocity on the rotor blade surface. The wake model is assumea to be of

a prescribed shape.

The solution of the integral is obtained in a numerical fashion

by approximating the actual rotor blade upper and lower surfaces and

wake surfaces by a finite number ¢f elemental surfaces on which the
doublet strength is assumed constant and then satisfying the resulting
gset of numerical normal surface boundary conditions at the centroid of

each of the blade elemental surfaces.

-

: A computer program was developed for the lifting surface theory
which depends on & given geometry of the wake. 'I'Lis program lends

1 itself to an iterative procedure for a future force free wake lifting
surface theory analysis. The computer results for two case studies is

i also presented. i
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SYMBOLS

The following 1s an abridged list of synbols used in the report.
Only those symbols of select importance which are used repeatedly
throughout the report are listed here. All symbols are defined in
the body of the report at the time of their initial use. The same
symbols may refer to dimensional or non-dimensional quantities de-
pending upon the context of the immediate section of the report in
which they are used. The physical units of any parameter may always
be assigned as follows:

a) All lengths are in units of feet.

b) All forces are in units of pounds.

¢) 212 passes are in units of slugs.

d) All times are in units of seccnds.

e) All angles are in units of radians.
The non-dimensionallized param=»ters are obtained by dividing all lengths
by the rotor radius and dividing all velocities by the rotor rotational
tip speed. In those sections where it becomes rnecessary to distinguish
dimensional quantities from the non-dimensional quantities we have
underlined the dimeneional quantity, eg. R implies units of length

and R implies a non-dimensionalized length.

English %
A Area 3
Bl Hub radius teken to be the distance along the span ]
axis from the axis of rotation to th: root sectio..
B2 i.1e span length taken to be the rotor radius less

the h.» radius.



B3

CG

p-»)

wf =Wl W

=|

Rgp

THETA

Chord stetion along which the blade span axis 1lies.

Chord grid station expressed in terms of percent
chord length.

Pressure Coefficient defined on the basis of the
tip speed squared.

Used in the program and is the same as Cp above.

Used in the program to define a pressure coefficient

T Canidcans i b b o et o skl b o e

xi

based on the local relative free stream velocity squared.

Rotor Torque Coefficlent (refer to equation 3.7.5)
Rotor Thrust Coefficient (refer to equation 3.7.4)

Angular measure that two ad}acent rotor blade span
axes are displaced from sech other.

Force
I-tegral as defined by equation (2.4.7)

Partial derivative with respect to G of the integral I.
5 is a dummy variable.

Pressure

Torque

Rotor radius

Position vector from the origin to some field point.
Absolute length of vector R.

Position vector from the origin to some point on the
body or wake surface.

Position vector from some point on the body or wake
surface to some field point.

Function which defines body surface or span station
depending on context.

Span grid station expressed in terms of percent true
span length.

Geometric pitch at a span section.
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Greek

> ®» R

€N ™

&

Operators

¢
IS5

Geometric pitch at the root section.

Linear twist of the rotor blade. Defined as the
geometric pitch at the tip less that at the root.

Vector velocity with respect to the {(X,Y,Z2,t) reference
frame.

Vector translational velocity of the body with respect
to the (X,Y,2,t) reference frame.

Function which defines wake surface.
Refer to equation (2.6.7)

VYector surface unit normel positive cut from the
surfac- .

Time

Average downwash at the rotor blade trailing edge derived
from momentum considerations.

Refer to equation (2.6.8)
Refer to equation (2.6.9)

itotor free stream inflow ratio and given by the rotor
axial climb velocity divided by the tip speed.

Doublet strength per unit area
Density

Doublet potential function

Rotor rotational rate (w = /&/)

Vector rotation of the body with respect to the
(x,¥,z,t) reference frame

Partial derivative with respect to some dummy variable
S
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bubscripts
o0
avg.

ind

llvE

Superscripts

/

Indices

I

xiii

Substantial derivative

Vector gradient operator

Condition existing in the free stream environment
Average

Potential induced parameter

bcdy

wake

Upper surface

Lower surface

Gpecific point P

Dummy directional axis or parameter

Trailing edge

Parameter referenced to the (x',y',z',t') reference
frame

Vector parameter

Unit vector parameter

Indexed blade elemental surface. The elemental surfaces
are indexed consecutively from the leading edge to the
trailing edge by proceeding from the inboard span segment
to the outboard span segment first on the upper blade
surface then on the lower blade surface
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xiv
Imux Maximum number of indexed blade elemental surfaces
[ per blade,
: J Same as I above and used ‘n terms of a dummy 1
summaticn . (4
Jmax Same as I gy 8bove .
K Indexed wake elemental surface. The wake elemental
; surfaces are indexed consecutively from the trailing
edge segment in a streamlinewise sense, !
Knax Maximum number of indexed wake elemental surfaces
which streamlinewise trail a particular trailing !
edge span segment . |
L Indexed blade nunber. The blades are numbered conse-
cutively in the direction of rotation.
[ Lpex Number of rotor blades.
] B
M Indexed span station or span segment. M=l is at or
near the root section respectively,
] Mrno Maximum number of indexed span stations . !
1
MM Maximum number of indexed span segments. (MM = Mp,. - 1)
; N Indexed chord station or chord segment. N = 1 is at or
3 near the leading edge respectively.
L
F Npax Maximum number of indexed chord stations. ]
NN Maximum number of incexed chord segments. (NN = Npax - 1) ]
i Indexed corner points of the elemental surfaces. The M
corner points are indexed consecutively in a clockwise i
manner when viewing the surface along the negative :
surface unit normal direction. Also used to index the ’
segment of the elemental surface lying between coruner ]
points 1 and i+, 1
J Indexed corner point immediately ad)acent clockwise to
some i indexed elemental surface corner point. Used
in the same sense as i above.
n Maximum number of i indexed corner points which define

an elemental surface (usually n = )
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Reference Coordinate System

(x,Y,2)

(x',Y",2')
(4,4 7))

(x1,Y1,21)

(2, & 2)

Inertial fixed coordinate system in general. Used
also as a dummy reference system coincident with the
(7, Y ) systems below

Non~inertial body fixed coordinate system

Element fi{xed coordinate system

Blade one body fixed coordinate system coincident with
(X',Y',2")

Non-inertial body fixed cylindrical coordinate system
defined in the usual sense within (X',Y',Z')




CHAPTER 1. INTRODUCTION §

1.1 Scope and ObJectives

There is a need for a more rigorous approach to the treatment 1
of complex three-dimensional flows for geometries of certain V/STOL
aireraft. In the case of rotors in quasi-hover, the downwash velocity
associated with the generation of 1ift is large when compared to the
axial) flight velocity. In this situation the classical assumptions F
of 1lifiting rotential flow aerodynamic theory such as linearized boundary
conditions, lifting lines and rigid non-force free wakes do not lead
to accurate predictions. Without accurate inviscid flow predictions ;
the even more complicated viscous flow analysis cannot even be begun. 3

The progress in high speed digital computer technology now allows

one to formulate the flow problem more realistically. Although the

formulations necessitate the approximation of the integral and

differential ejurtions they may be considered exact in the sense that

the solution is attained uniformly as the computational network is

refined.

The present work 1s specifically concerne? with developing a

2k

potential flow lifting surface theory applicable to rotors in the

o

axial flight mode specifically including the hover mode. The theory

is an exact numerical analysis and its major objective is to predict

R LA

the local three dimensional blade surface velocities and pressures.
The theory necessarily incorporates a prescribed wake model because

of the complex nature of the problem. The force free wake analysis is




<0 be achleved by successive iterations on the wake geometry by
incorporating a wake prediction method into the analysis. 1In addition
to develcping the actual theory, the feasibility of applying the
theory is also demonstrated since a computer program was also developed
and is presented herein. The theory ard program developed are appli-
cable to any arbitrary shaped rotor blade having a finite non-zerc hub
radius and a pointed treiling edge. It is specifically not necessary
for the rotor blades to be thin as the surface boundary conditions are
satisfied on a surface network described on the wetted blade surface
area. Furthermore, perturbation velocities are not required to be
small. These last two constraints are associated with the so-called
linearized lifting surface theory and small disturbance theory

respectively.

1.2 Literature Review

In the discussion of any lifting surface theory one must first
distinguish between two basic classes of problems. One clcc, of
problems is concerned with the prediction of local surface loadings
by assuming a loading function which is expressed as a series of
assumed modes with unknown coefficients. These unknown coefficients
are then obtained by satisfying the normal velocity condition either
directly or indirectly at a set of puints whose number equals the number
of unknown coefficients. In certain cases “he set of points may exceed
the number of unknown coefficlents in which case the normal velocity
condition is satisfied approximately at the set of points by

appropriately weighting the set of points. Multhopp's collocation

e
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method (reference 1) for calculating the 1ift distribution of wings
in subsonic flows exemplifies this method. A very elegant analysis
by Verbaugh (reference 2) concerning unsteady lifting surface theory
for ship screws employs the acceleration potential in solving this
class of lifting surface theory problem.

The second clasa of lifting surface theory problems is concerned
with the prediction -~f local surface loadings by assuming a distri-
bution of surface elements on which the loadings are unknown but orn
which a set of influence coefficients can be defined. Perhaps the
most complete authoritative discussion of this method is that presented
by Hess and Smith (reference 3). In this method the integral equation
resulting from the application of the normal surface boundary condition
is reduced to a sum of integrations to be performed over a finite set
of surface elements such that the surface boundary condition is satis-
fied locally at one point on each surface element. The loading
function is some velocity potential function of unknown strength which
may, however, be analytically integrated over the surface element
region. A linear set of equations results such that the unknowns are
the potential function strengths on each surface element and the
coefficients represent the elemental integration results. The results
obtained by this method are excellent as documented by Hess and Smith
{reference 3) for nonlifting bodies.

The lifting surface theory method presented in this report relies
heavily on the excellent work of Hess and Smith (reference 3). The

presented problem differs fundamentally in that this theory is concerned

with a rotating lifting btody behind which trails a wake region.

e
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Various authors have noted the complexity of the calculations
required when one attempts to use this lifting surface theory method
for & lifting body. As late as 1971 Johnson (reference L) noted in
subgtance that the extent of the calculations involved in these methods
prohibited the direct application of the conventional lifting surface
theory technique to the calculation of rotary wing air loads. Many
authors have ingeniously attempted to cimplify the exact lifting surface
theory method in order to attain valid results. Erickson (reference 5)
reduced (after Prandtl) the lifting blade surface model to a 1lifting
line model. As such, his 1lifting line theory was based on a bound
vortex line and a continuous wake vortex sheet which he allowed to
distort on successive iterative steps. The contraction pattern was
fixed according to actuator disc theory. Landgrebe (reference /) alsc
showed that the reallstic self-induced distorted wake geometries could
be computed by application of the classical Biot-Savart law applied over
wake vortex filaments.

Erikson and llough (reference 7) showed that the applicability of
the lifting line model for hover prediction was questionable as blade
surface induced velocities vary rapidly along the chord direction
which, of course, would invalidate & lifting line model. The reason for
this rapid variation lies in the fact that the waeke has a pronounced
influence on the rotor blade because of its near proximity in hover.

At Sikorsky Aircraft Rorke and Wells (reference 8) have described
another unique variation on the true rotor lifting surface theory.

They have coupled a prescribed weke-momentum analysis to the conventional




strip-momentum theory in order to predict the rotor hover performance.
The prescribed wake geometry in this method is determined in part

by & theoretical analysies, the detajls of which were pressnted by
Clark and Leiper (re.crsnce 9). This analysis is a true engineering
design analysis and haas been optimized so as to require very little
computer time. This technique does, of course, require airfoil
sectional eerodynamic coefficients.

There are other variations of the rotor 1lifting surface theory
presented in the literature but to this authofs knowledge none of the
80 called rotor lifting surface theories presented are in fact true
applications of the ideal 1ifting surface model. Furthermore, it
appears that no single reported rotor prediction method is capable of
piredicting local surface velocities or pressures on some arbitrary
rotor geometry surface. Thus it appears that design studiecs of new
rotor blade shapes differing significantly from existing blade shapes
cannot be performed at the present time with any level of confidence.
Because of this technological de.irit (see references 10 and 11)
it was decided to attempt to develop a true rotor lifting sur-face
theory and actually apply this theory in terms of an exact numerical
sense. This work is concerned with the initial phase of the development,
that is, for a prescribed wake trailing an arbitrary shaped bhody
develop a lifting surface theory which will predict for the axial flight
mode local surface velocities and loadings. The succeeding phase will
be to use the theory and program of the initiil phase and modify them
so as to include a wake iterative scheme in order to include a force

free wake analysis into the lifting surface theory.
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We have not attempted to review here the subject of 1lifting
surface theory in its entirety but have rather restricted the review
to selected current rotor lifting surface theories indicative of the
general development trends. For an additional literature review
concerned mainly with lifting surface theory applied to planar flows
refer to Djojodihardjo (reference 12). Djojodihardjo and Widnall
(reference 13) in a paper which summarizes the previous reference
presents, in part, a discussion of the doublet velocity potential
which we have used to verify the derived integrated doublet velocity
potential used herein.

In addition to the explicit references above w have included a
list of referenceswhich we have used for obtaining fundamental
information and for obtaining information related to general rotor

performance prediction methcds.

1.3 Report Layout

We have presented in Chapter 2 the formulation of the problem in
terms of the governing equations. Chapter 3 presents a step by step

discussion of the cverall problem solution. Chapter L discusses the

computer program in a general manner. The results of two computer run

cases are presented in Chapter 5. In Cnapter 6 we have discussed
extensions to the present problem. We have relegated all discussion
material not actually essential to the main problem discussion to

Appendices A, B and T so as not to interrupt the overall problem

discussion. Appendix D describes the computer program in detail as to its

options and input/output.
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CHAPTER 2. DISCUSSION OF THE BASIC PROBLEM 4

et

2.1 Pormulation of the Governing Equations
As a lifting rotor moves into the air it disturbs the air in

such a manner as to derive its 1ift. This problem is concerned

Bt g

with the prediction of the local surface pressure acting on the
rotor blades in hover or axial flight t:rough an analysis of the
rotor induced velocities. We shall formuicte in this section the

equations governing the fluid motion.

Let us consider the 1lifting rotor system to consist of:

a) a three dimensional body of arbitrary shape which is
executing a constant rotatory and translatory motion, and

: b) a wake which trails the lifting body. The surface of the

body may be represented by

S(R ¢) = 0O (2.1.1)

and cthe wake following the body may be defined by a surface of velocity

discontinuity given by
3 WeR t) = O (2.1.2)

F In the above equations A is the position vector witlL respect to

gome fixed inertial reference frame. The external flow field is assumed

e

to be an incompressible flow field which is inviscid and initially
irrotational and at rest. The wake is further assumed to be composed

of two surfaces coincident with each other. Each wake surface is

i i o £ Sl




assumed to have its origin at some infinitesimal region located on

the body upper and lower surfaces at the tralling edge. These tralling

edge regions as such represent the lines along which the viscid
boundary layer smocthly leaves the trailing edge. It is assumed in
4 the analysis to follow that there exists no flow separation from the
i body except at the trailing edge, thus the body must have a sharp

trailing edge.

It follows row from the -ondition of irrotationality . .34 the
continuity equation that a velocity potential 527A5t) can

be defined such that it must satisfy Laplace's equation

Vifrke) =0 (2.1.3)

R S e S

The velocity potential at an exterior field point can be given by an

integral equation which incorporates a distribution of singularities over
the 1ifting body and wake surface. In this analysis we will take as

our distributed surface singularities the doublet or dipole which is
itself composed of two more basic singul-rities, namely the source

and sink. In Appendix C is presented a discussion of the doublet
potential and its axis convention. The resulting integral equation

for the doublet velocity potential is given by

~ - ARk L) v R CRR L2
Frh L) - g5 ks 2L e (KA

e | £, 2% s ) |

AS

(2.1.4)




where

R 18 the poaition vector to some field point, P.
AZ is the position vector to some surface point.
E' 77 1s the unit outward surface normal.

é,,- /4_‘- "?5 » which 1s the vector from the surface

point to the field point.

4 is the doublet strength per unit area at some surface

point.

The potential as given satisfies Laplace's equation identically.
The above velocity potential is subject to the following boundary
conditions:

a) In the far region away from the doublet surface distribution

the fluid velocity (V) given by

v = V& (2.1.5)

should approach zero. Thus the far boundary condition becomes

LmidZ = VFcA L) — 0 (2.1.6)

Ksp = o

This boundary condition is inherently satisfied by the doublet
velocity potential.

b) In the reglon of the body surface the normal velocity at the
surface must be zero. This kinematic normal boundary condition

may be expressed as
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o  ScRe) = 0.

(2.1.7)

c¢) In the region of the wake surface. since the wake cannot
maintain a pressure discontinuity, the pressure across

the w<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>